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Abstract 

The real part of the anomalous-dispersion terr0 is 
calculated by an approximate treatment which is 
equivalent to working from Pauli's equation. No use 
is made of the forward-scattering approximation. 
Although small A-independent corrections are 
required, it turns out that the theory of Cromer & 
Liberman [J. Chem. Phys. (1970), 53, 1891-1898] is 
essentially correct in accordance with the experiment 
of Saka & Kato [Acta Cryst. (1987), A43, 252-254]. 
The magnetic-scattering term [Jensen (1979). Phys. 
Lett. A, 74, 41-44; (1980). J. Phys. B, 13, 4337-4344] 
cannot be theoretically justified. 

1. Introduction 

In order to understand the experimental result of 
Saka & Kato (1987), the elastic-scattering amplitude 
is calculated with an approximation up to order 
(hw/mc2) 2, where mc 2 is the rest energy of an electron 
and hto is the energy of the incident photon. Since 
we are interested in diffraction experiments, forward 
scattering is not assumed. The theoretical scheme is 
close to that of Cromer & Liberman (1970) (hereafter 
CL) to ensure easy comparison. The principal result 
is that the magnetic-scattering term suggested by 
Jensen (1979, 1980) and Gerward, Thuesen, Jensen 
& Alstrup (1979) should not appear in accordance 
with the experimental result mentioned above. 

In this paper, the notation f is used for the scatter- 
ing amplitude, i.e. the scattering factor times the 
polarization factor. The same notation was used for 
the scattering factor in the previous paper, according 
to crystallographic tradition. 

2. The relativistic formulation of  the scattering 
amplitude 

The elastic-scattering amplitude due to a single elec- 
tron can be written in the form 

( ( alX*_2 Q2_[n+)_( n+lQ~Xala) 
f (s) /mc 2 = ~+ \ e - e,, + hto + in 

0108-7673/87/020255-06501.50 

where 

4 (alXaQ_l~_+)(n+[Q2X*2la)] 
e - e, - hto + i71 ] 

+~ ((alX*2Q_2ln-)(n_-IQ,X, la) 
- \ e - e . - +  h w  

/ ' i  

4 (alX~-Q-On-)(n-lQ2X*21a)) 
e - e,, hto + irl ] 

(1) 

s = kl - kz (2) 

within the second-order perturbation approximation 
(Heitler, 1954). Here kl and k2 are the wave vectors 
of the incident and scattered waves, respectively, l a) 
indicates the state vector of an electron having rela- 
tivistic energy e, n ÷ and n-  denote the intermediate 
state having positive and negative energy, respec- 
tively, and ~7 is an infinitesimal constant due to the 
adiabatic approximation. The operators Qi and Xi 
have the forms 

Q, = (e,. et) (3) 

and 

Xi = exp (ik,. r) (4) 

and et is the Dirac 4 × 4 matrix which is related to the 
Pauli 2 x 2 spin matrix tr by 

o(o o) 
The expression for f can be decomposed into three 

parts as 

f - - / o +  (f* - N )  + ( f -  - ~ ) ,  (6) 

where the suffix 0 indicates the same expression as 
(1) except that the denominator is replaced by 2mc 2, 
and the superscripts + and - indicate the terms ~,,* 
and ~,,-, respectively. Obviously, 

f = f +  + f -  and fo=f~o +fifo. 

It is easily shown that 

fo= (el. e2) ~p(¢) exp (is. r) dr (7) 
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256 THE REAL PART OF THE ANOMALOUS-DISPERSION TERM. II 

exactly and p(¢) is the probability density of the 
electron in the state [a). 

According to CL f+ is the leading term of the 
anomalous dispersion and the correction term has 
the form* 

a :  - ~  + (f-  - ~ )  
=SEtot/mc2 (8) 

where Etot means the total energy of an atom in the 
ground state. Jensen (1979), as briefly explained in 
the Introduction to paper I (Saka & Kato, 1987), 
criticized CL's result and showed that 

f~o = -~Etot/rnc2 + ~Z( h~o/rnc2) 2 (9a) 

f - - f o  = Eto t / rnc2-~Z(h~o/mc2)  2. (9b) 

Obviously CL's correction is of order ( v / c )  2 and 
Jensen's (1979, 1980) additional term (magnetic scat- 
tering term) is of order (v, , /c)  4, where v and v, are 
the velocities of electrons in the ground state and the 
intermediate state, respectively (rnv~ ~- ho~). For this 
reason, if one needs Jensen's term, the whole calcula- 
tion must be performed exactly up to order (v, , /c)  4. 
This is the main task in the following sections. 

3. The higher-order calculation 

The present approach is essentially equivalent to the 
Pauli approximation for (1) (Akhiezer & Beresteskii, 
1965). The four components of a state vector are 
decomposed into two state vectors (~p, X), each of 
which has two components. In the case of positive- 
energy states, they are related approximately as 

X =  (2mc) - l ( l r  . p)~o (10) 

where p is the momentum operator. The Hamiltonian 
operates on ~p in the same manner as it does in Pauli's 
equation. If one neglects the spin-orbit  coupling, it 
has the form 

H : [ p 2 / ( 2 m ) + e V ] l  (11) 

where e V  means the potential energy and 1 implies 
the 2 x2  diagonal identity matrix. For a negative- 
energy state, X and q~ must be exchanged in (10) and 
the signs of X and e V  must be reversed. 

In addition, two assumptions have to be made for 
the ground state of the atom. First, the total sum of 
the spin along any specific direction is assumed to 
be zero. Next, the atom is assumed to be spherically 
symmetric. This implies that the total momentum of 
electrons in the atom is zero. Based on these assump- 
tions the terms proportional to (r and odd powers of 
p will be dropped at a certain stage of calculation, 
although the formulation is referred to a single elec- 
tron for convenience. 

* Equations (8), (9a) and (9b) refer to a single atom. Z is the 
number of electrons in the atom. 

3.1. The calculation o f f - - f o o  

From (1) and the definition of the relevant term, 
one can obtain the expression 

( f - - f o ) / m c  2 

= Y~(a[X*Q21n)(nlQ1X~la) 
n 

x {[ 2mc 2 + ( E + E,,) + hw ]-1 _ (2mcZ)-1} 

+ Y(alX~Qlln)(nlQ2X*la) 
n 

x { [ 2 m c 2 + ( E + E , , ) - h w ] - l - ( 2 m c 2 )  -1} (12) 

where the superscript - is dropped in n-  for con- 
venience, and e and en are replaced by E + mc 2 and 
- (  E,, + mc 2) respectively. Because mc2>> ( E + E,,) + 
hoJ, the factor { } can be approximated as 

mc2{ } = ( - 4 m c 2 ) - l ( E  + E,, + ho~) 

+ ~ ( m c 2 ) - 2 ( E + E , , + h ~ o ) 2 +  . . .  . (13) 

Incidentally, CL and Jensen took up only the first 
term. 

First, let us calculate the summations 

I ~ = ~ ( a l X * Q 2 l n ) ( n l Q i X ~ l a ) ( E + E , , + h o ~ )  (14a) 
n 

I2=Y~(alX, Q~ln)(nlQ2X*la)(E+En-ho~). (14b) 
n 

We shall omit the small terms proportional to I~oxol 2 
and assume that the X, form a normalized complete 
set. If one recalls that E,,[X,,) = Hn[)(~), it follows that 

I , = ( ~ l X * ( e 2 . ~ r ) ( E  + H , +  hw)(el ,  er)X,l~o) (15a) 

and the operator product can be reformed as 

I I =x*~xl(e~. ~)(el. ~) 

x { h w + ( m ) - I [ p 2 + ( h k t . p ) + ( h k , ) 2 / 2 ] } .  (15b) 

In deriving this, the relations E l~a) = HI ~a), H + H,, = 
p2/m (for n = n-)  and the commutative relation [(A2) 
of Appendix A] were employed. A similar expression 
is easily obtained for I2. 

The commutative and anticommutative relations 
(A4b, c) give the contributions of Il and I2 to ( f -  -f~o) 
in the form 

I = (-4mc2)-~(I~ + I2) 

= ½(el. ea)(h/mc)2g(s) 

-~(e l  .e2)(h~o/mc2)2fo(s) (16) 

where 

g ( s ) = ~ e x p ( i s . r ) ~ p * ( r ) A ¢ . , ( r ) d r ,  (17a) 

fo(s) = ~ exp ( is .  r)~p*(r)¢a (r) dr. (17b) 

In deriving (16), we have dropped a few terms propor- 
tional to (r and p for the reason mentioned above. In 
(17b), ~p* ~pa is not exactly the probability density 
O(~) used in (7). Since, however, the correction term 
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X*Xa is of  order (v/c) 2 and (hw/mc2) 2 itself is of 
order (v,/c) 4, it is safe to regard fo as the scattering 
factor of an electron. 

Next, we shall consider the higher-order terms, 

II1 =E(alX*Q2ln)(n[QaXlla)(E + E. + ha,) 2, (18a) 
n 

112= ~,(alXlQdn)(nlQ2X*la)(E + 17.,- hto) 2. (18b) 
/1 

In a similar manner to the case of (15a), for example, 
111 has the form 

II~ = (~,alX*(e2. or)(E + H,, + hos)2(e I . or)X,I ~p~ ). 

(19) 

In this case many terms appear, but after dropping 
the odd-power terms of p and or and retaining the 
terms of order up to ( v / c )  4 and (1)n/C) 4, we have 

II = ~(mc2)-2(II1 + 112) 

= ~(el. e2)(h/mc) 4G(s) 

+¼(el .e2)(hto/mc2)2fo(s) (20) 

where 

G(s)=~exp(is.r)~o*(¢)A2~oa(¢)dr. (21) 

Finally, from (16) and (20) we obtain the result 

f--fifo = (el .e2)[½(h/mc)2g+~(h/mc)4G]. (22) 

It is significant that the second terms in the 
expressions of I and II are exactly cancelled out. 

3.2. The calculation of f~o 
We start with the expression 

= ½(~ (alX*Q2ln)(nlQ~Xlla) 

+ ~ (alXlQ~ln)(nlQ2X*[a)). (23) 

In this subsection and the next, n stands for n ÷. 
Let us consider the matrix element 

M=(nlQXla)  

(24) 

We shall omit the suffix for a while. By virtue of the 
relation (10) the smaller component X can be rep- 
resented by the larger component ~0. It follows then 
from the commutative relation (A1) and the proper- 
ties (A4a, b) that 

M = (1/2mc)(~o.lX(e. or)(p, or) + (p. or)(e, or)X]~Oa) 
= (1/mc)(~o. IAXI ~o~) (25a) 

where 

A=(e .p) - ( i /2 )h(or . [exk] ) .  (26) 

It is easily seen that the conjugate matrix element has 

the form 

M+=(alX*Qln)=(1/mc)(~o~lX*A[~o,). (25b) 

If one includes the proper indices for M, A, X etc. 
and assumes the completeness of ~o, one obtains* 

f~o = ½( mc)-2( ( ~o~]X2* A2AIXI[ ~0,.) 

+ < alX AIA2X*I o>), (27) 

A1 and A2 themselves are not commutable operators. 
Their order, however, can be exchanged under the 
average (~0al [~0~) because the commutator results in 
only a term proportional to or [cf. equation (A4a)].  
Thus in practice one can use the expression for the 
product 

A2AI= A1A2 = (e, .  P)(e2. p)+-~(fik)2(z~ .z2) (28) 

where 

zi=[eixki]. (29) 

It is worth noting that Ai and Xi are commutable but 
A~ and X s are not [cf. equation (A3)]. Again, however, 
they are commutable under the average by dropping 
odd-p terms. From these relations, one obtains the 
expression 

f~o = --l(el • e2)(h/mc)2g(s) 

-I" 1(Z1 .z2)(hto/mc2)2fo(s). (30) 

3.3. The calculation o f f  + 

Let us start with the expression 

f+ = mc2[ ~ ( alX*2 Q2ln)(nlQ,Xlla) 

x (E - E, + ha, + irl) -1 

+ Y, (a]XlQlln)(nlQ2X*la) 
n 

x ( E - E , , - h w ) - ' ] .  (31) 

As in the case of fro, with the use of the relation 
f(H.)l~o.)=f(E.)l~o.), it follows that 

f+=S,+S2 
J~ = (m)-~(~oa IX2*A2B+A~XI[ tpo) 

J2 = (m)-I(~%IX~AzB-A2X*I~Oa) 

where 

B + = ( E  - H , ,  + h w  + i t / )  -1 

B -  = ( E - H , , -  ho~) - I  . 

(32a) 

(32b) 

(32c) 

(33a) 

(33b) 

* Note that the sign of the second term of (26) is negative in A 1 
and positive in A2. In this manipulation, p2 x_py_pz=~p_ 2_ 2 i_2 has 
been used. 
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Inserting (26) into (32b, c) and dropping terms 
proportional to tr, one can see that each of J~ and J2 
is decomposed into two components, viz 

where 

f+ = s f  + s t  + sT' + sT, (34) 

jf=(m)-l(q~,,l(e2.p)X*B+X,(e,, p)l~Oa) (35a) 

J~ = (m)-'(,p,,l(e,. p)X,B-X*(e2 • p)l,p~) (35b) 

J~' = ~(z, .z2)(hw)2(mc2)-'(q~,,IX*B+X,l~Oa) (35c) 

J7  =¼(zl .z2)(h~o)2(mc:)-'(~lX, B-X*l~pa). (35d) 

The components with superscripts p and m are called 
the photoelectric- and magnetic-scattering terms, 
respectively. 

First, we shall consider the magnetic-scattering 
terms (35c, d). In order to manipulate these some 
properties are needed of operators of the form 
XiB±Xj, a s  outlined in Appendix B. 

From (B4), then, one obtains 

 =sT+s7 

= ](z, .  z2)( hto / mc2)2fo(s) (36) 

within the approximation of order (vn/c) 4. This 
expression is identical to the second term of (30). 
Again, the magnetic-scattering term should not 
appear in the final expression of ( f+-fro) .  

Next, we shall consider the photoelectric-scattering 
terms (35a, b). The treatment used for the magnetic 
scattering may not be applied because the commuta- 
tive relation of B and (e. p) results in a formidable 
expression. Moreover, in many problems, we are 
interested in the imaginary part of f+ as well. For 
these reasons, the standard approach is to use a 
dispersion relation of Kramers-Kronig type. For this 
purpose, it is convenient to return to an expression 
of a type similar to (31), viz 

= (1/rn)[~ (X* MR),.,,, (M, X,),,,~ 

x ( E - E,, + hto + irl )- ' 

+ E  (X1M,),,,,(M2X*I,,a(E-E,,-hw)-'], (37/ 
n 

where the operator M~ is given by 

M~ -- (ea. p), M2 = (%. p). (38) 

Using the conventional relation in the limit (77 ~ 0), 

(E - E, + hto + it/) -~ 

=P(E-E,+hw)-~-zr i3 (E-E , ,+hto) ,  (39) 

one can rewrite (37) in the form 

f p=(1 /m)  P (E_~n?--(hto)2 

x [ (X*M:)a,,(M,X,),,,, + (X1M,) an(M2X*2)na] 

hw + P L, ( E -  E . ) 2 -  (hw) 2 

x [(X,M,),,,, (M2X*),,a - (X'M2),,,, (M, X,),,,, ] } 

-(,rr/m)i Y] 3 ( E -  En + hto)(X*2M2)~n(M,X,),,~. 
n 

(40a) 

If one admits the reciprocity theorem on the scatter- 
ing amplitude in every order of perturbation [ i. e. f(k2, 
kl) = f ( - k ~ , - k 2 ) ] , *  it follows that 

(X~M2)an(MiXl)na=(XlM1)an(M2X~)na (41) 

in the present case. Then (40) is simplified in the form 1[ 
f p= P~(E_E,,~--Chto)2(X*M2),,,,(M,X,),,,~ 

-Tri ~ 3 ( E -  E. + hto)(X*M2),,,,(M,X,),,a]. 
t l  

(40b) 

In general (X*M2)a. and (M~X~)na may not be real. 
If, however, the detailed balance theorem holds for 
the scattering amplitude [i.e. f(k2, k~)=f(k~,  k2)], 
which is true for atoms having inversion symmetry, 
one can assume that (X*M2)a,(MIX,)na is real. In 
this case, the mathematical structure of (40b) is iden- 
tical to that in the case of forward scattering. Then, 
the Kramers-Kronig type of dispersion relation can 
be used although (X*M2)a,(M~X~)n~ cannot be iden- 
tified straightforwardly as the cross section for photo- 
electric absorption. Since the details of manipulating 
(40b) to obtain the real and imaginary parts of 
are described in the literature (e.g. Cromer & Liber- 
man, 1970; Jensen, 1980) we shall not repeat them 
here. 

Finally, we obtain the expression for the total scat- 
tering amplitude, (6), by putting together (22), (30), 
(34), (36) and (40a) or (40b). Then the anomalous- 
dispersion term is given by 

f '+if"=Re(f~p)+i Im (f~p)+ (el .%) 

x[~(h/mc)2g(s)+¼(h/mc)4G(s)], (42) 

where Re and Im refer to real and imaginary parts, 
and g(s) and G(s) are defined by (17a) and (21) 
respectively. 

* Here, the polarization and spin notations are omitted for 
simplicity. 
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4. Discussion and concluding remarks 

Starting with the most general expression for the 
elastic-scattering amplitude based on the Dirac rela- 
tivistic equation, we derived a concrete expression 
(42) for the anomalous dispersion. The approxima- 
tion used is essentially equivalent to the Pauli 
approximation. Several correction terms must be 
amended to give the leading term f~-p of (40a) or (40b), 
which is identical to the non-relativistic expression 
for anomalous dispersion due to photoelectric scatter- 
ing. To be exact, however, the relativistic wave func- 
tion has to be used to calculate the matrix element. 
This result is slightly different from the formulation 
given by Cromer & Liberman (1970), in which the 
leading term consists of ~ and f+~, one of the mag- 
netic-scattering terms, in the present notation. 
However, they neglected the t e rmf~  in the numerical 
calculation because the order of magnitude, (vn/c) 4, 
is small. 

In the present formulation, the correction terms 
were calculated approximately up to order (v/c)  4 and 
(v,,/c) 4. This approach is free from the approximation 
of forward scattering or the so-called optical approxi- 
mation [exp ( ik.  r) = 1]. This is desirable because we 
are interested in the application to diffraction experi- 
ments of X-rays of ~ngstrrm wavelengths. 

As regards the correction terms, two points are 
worth mentioning. First of all, the magnetic-scattering 
term should not appear. In fact, it consists of four 
terms, two of which were calculated by Jensen (1979) 
in the case of forward scattering. They, however, are 
cancelled by the other two which are newly calculated 
in this paper. The cancellation is exact in any scatter- 
ing direction and any direction of polarization. This 
result is in accordance with the recent experiment 
reported in Paper I (Saka & Kato, 1987) and with 
the old result (Takeda & Kato, 1978). Further 
evidence can be seen in the excellent agreement 
among the structure factors of Si reported inde- 
pendently by Saka & Kato (1986), Aldred & Hart 
(1973) and Teworte & Bonse (1984), after the 
observed values are corrected by CL values. The 
experiment of the first group was carded out with 
0.4/~ X-rays whereas the latter two groups obtained 
the structure factors with Ag and Mo Kal. 

The second point pertains to two to-independent 
terms, given by the square bracket in (42). The first 
term relates to (p2) of an atom, which reduces to 
5Etot/mc2 obtained by CL in the case of forward 
scattering. The second term relates to (p4), which 
would be very small. Theoretically, these terms have 
an s dependence. Another s dependence is also antici- 
pated in the leading term, f~p. Any variation in these 
terms, however, is expected to be very small because 
the main contribution in any of them is due to K 
electrons which are spatially confined within po = 
ao/Z (ao=the  Bohr radius). In the case of Si it 

amounts to 0.038/~. Moreover, one can obtain the 
explicit form of g(s) as 

g(s) = g(0)[1 + 2(Spo/2)2]/[1 +(Spo/2)2] 2. (43) 

The deviation of g(s)/g(O) from 1 is less than 0.3% 
even for the 880 reflection of Si. Thus, one need not 
bother about the s dependence. 

Incidentally, the experiment of Saka & Kato (1987) 
and similar types do not afford any critical informa- 
tion on the to-independent term for the very reason 
of the experimental principle. At present, it seems 
rather hard to obtain any experimental evidence on 
the s dependence of these correction terms so that 
one has to rely on the theoretical argument presented 
here. 

In conclusion, theoretically the to dependence of 
the real part of the anomalous scattering comes out 
only through the photoelectric scattering term f~-p. The 
additional correction must be to independent and 
practically s independent. Unless the absolute value 
is required with any higher precision, CL's values are 
most reliable and can be used for many purposes. 
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Rigaku Industrial Corporation, for his encourage- 
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to the Mitsubishi Foundation for financial support. 
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APPENDIX A 
Some commutative relations 

[p,X]=X(hk). (A1) 
[p2, X]  = X{(hk)2+ 2(p. hk)}. (A2) 
[A,, Xi] =0  from (e,. k , )=0.  (A3a) 
[A1, X*] = - X * ( e l .  hk2). (A3b) 
[A2, X1] = Xl(e2. hk~), (A3c) 
where Xi and Ai are defined in the text, 
equations (4) and (26). 
(a. tr)(b. ~r) = (a. b) + i(tr.  [ax  b]). (A4a) 
(a. tr)(b, or) + (b. tr)(a,  o)  = 2(a. b). (A4b) 
(a. o')(b. ~r)-(b.  o')(a. ~r) 

= 2i(o". [ax  b]). (A4c) 

APPENDIX B 
Approximate expressions involving XiB±Xj 

By virtue of the relation (A2), one can easily see that 

X2*B+X1 = X~XI[(E-H,,)+ hto-A,]-', (B la )  

X1B-X*= X~X*2[(E-H,,)- hto-Az]-', (Blb)  

where 

A1 = (2m)-l[2(p.  hkl) + (hk)2], (B2a) 

A2=(2m)-l[-2(p. hk2)+(hk)2]. (B2b) 

The operators (B1) act directly on ]~0a) SO that E -  
H n = H a - H n = 0  in the case of n=n +. Since 
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(v /c ) ,~ l  and (Vn/C)2"~,I c a n  be assumed, A1/(hto) 
and A2/(hto) are much smaller than unity. With the 
use of the power series for the terms in square brackets 
in (B 1), we have 

X~*B+X, = X*Xl(~,o)-'[1 +(a, /~,o)  

+(a,/h~o)2+ .. .], (B3a) 

X I B - X *  - X , X * ( h t o ) - l [ -  1 + (A2/~0t) ) 

-(A:lh~)'+...]. (B3b) 
From these, it follows that 

~,olx*B+x, + X,B-X*I ~o) 

=(~%]XiX*l~a)(mc2)-l[l+(v/c)2+ " " "], (B4) 

where odd terms of p are dropped. 
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Abstract 

By combining the accurate low-angle X-ray structure 
factors of A1-Li solid-solution alloys (containing 5.25 
and 8.06 at.% Li) determined by the critical voltage 
technique in high-energy electron diffraction (HEED) 
with higher-angle values obtained by interpolation 
between best pure-element form factors, a complete 
set of accurate X-ray structure factors for these alloys 
has been produced. From the measured Debye- 
Wailer factors for the alloys it was found to be difficult 
to determine a Debye temperature trend with compo- 
sition for AI-Li solid-solution alloys because of the 
extent of the experimental errors, although the results 
suggest that the Debye temperatures of the alloys are 
higher than that of pure aluminium. This is obviously 
consistent with an increase in Young's modulus; i.e. 
the stiffness of the alloys appears to be greater than 
that of pure aluminium. This increase appears to arise 
predominantly from an increase in the force constant 
between nearest-neighbour (n.n.) lithium atoms in 
the alloy as compared with the value for pure lithium. 
This occurs because n.n. lithium atoms are closer 
together in AI-Li solid-solution alloys than they are 
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in pure lithium. Because the lithium atoms are closer 
together in the alloys, the electron charge density, p, 
associated with the valence electrons in the alloys is 
likely to be higher than if p is considered unchanged 
by alloying. This suggested increase in the charge 
density of the alloy valence electrons was confirmed, 
as the experimental 111 low-angle structure factors 
of the alloys were found to be significantly higher 
than the equivalent values obtained by interpolation 
between the best pure-element form factors. Such 
electronic changes are to be expected for AI-Li alloys 
as aluminium and lithium have a valency difference 
of two. 

1. Introduction 

When a crystal is set at a Bragg reflecting position in 
electron diffraction, the intensity of the diffracted 
beam is usually strong owing to the constructive inter- 
ference of waves scattered in the diffracted-beam 
direction. However, for reflections higher than first 
order in a systematic row, at a particular electron 
accelerating voltage known as the critical voltage, Vc, 
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